- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Zanchenling (1)
-
Wen, Tao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract End‐member mixing analysis (EMMA) is widely used to analyze geoscience data for their end‐members and mixing proportions. Many traditional EMMA methods depend on known end‐members, which are sometimes uncertain or unknown. Unsupervised EMMA methods infer end‐members from data, but many existing ones don't strictly follow necessary constraints and lack full mathematical interpretability. Here, we introduce a novel unsupervised machine learning method, simplex projected gradient descent‐archetypal analysis (SPGD‐AA), which uses the ML model archetypal analysis to infer end‐members intuitively and interpretably without prior knowledge. SPGD‐AA uses extreme corners in data as end‐members or “archetypes,” and represents data as mixtures of end‐members. This method is most suitable for linear (conservative) mixing problems when samples with similar characteristics to end‐members are present in data. Validation on synthetic and real data sets, including river chemistry, deep‐sea sediment elemental composition, and hyperspectral imaging, shows that SPGD‐AA effectively recovers end‐members consistent with domain expertise and outperforms conventional approaches. SPGD‐AA is applicable to a wide range of geoscience data sets and beyond.more » « less
An official website of the United States government
